

Cost Estimation @ the Speed of Light – Concurrent Engineering Modernization

Dr. Jairus Hihn, Supervisor, Modeling and Analysis Sherry Stukes, Software Systems Engineer Matthew Ramirez, Systems Engineer

ICEAA Southern California Chapter Workshop
7 March 2018

2018 California Institute of Technology.
 U.S. Government sponsorship acknowledged.

Presentation Outline

- Background/Overview
- Integrated Model Approach
- Cost Models
- Database
- "Take-Aways"

Background/Overview

- Each year JPL submits 50 or more proposals and conducts hundreds of studies many in our Concurrent Engineering (CE) environment
- Over the decades, each organization has evolved their own data sets and costing methods most of which are 'stovepiped' snap shots of our past missions
- Two years ago a major process improvement project was started to improve how we cost in the CE teams and during the early formulation part of the lifecycle
- So this is our story

The Problem

Team X Design Cost Paradigm Greatly Reduces Turn Around

What is Concurrent Engineering?

- Concurrent Engineering is a systematic approach by diverse specialists collaborating simultaneously in a shared environment, real or virtual, to yield an integrated design
- This approach is intended to cause the developers from the very outset to consider
 - All elements of the product life cycle, from conception to disposal, including cost, schedule, quality and user requirements

All Concurrent Engineering Teams Have Certain Key

Elements

Data Shown is notional

- Well defined process and products
- Multidisciplinary team
- Facility
 - Integrated set of tools that maintain study parameter consistency
- Integrated design model

Concept Maturity Levels (CMLs) - 2

Concept Maturity Levels - 3

Preliminary

3/7/2018

Integrated Model Approach

- Team X completes high level designs in 3 mornings or less
- We have always generated cost estimates during the sessions so design and cost can be traded off
- In the future we want to estimate cost in 'real time'

Cost Models

Different Cost Models for each Concept Maturity Level

Cost Models

CML₁

Mission-Cost Allocation Percent Tools

	Payload -> Flight System Cost Estimator						
INPUTS	Mission Type	Asteroid & Comet					
	Mission Size	Medium					
	Payload Cost \$M FY16	\$ 95					
OUTPUTS	Estimated FS Cost \$M FY16	\$ 317					
	Estimated FS + PL Cost \$M FY16	\$ 412					
	Mission Type	Asteroid & Comet					
	Typical Payload Percent of Total Cost	13%					
	Typical Flight System Percent of Total Cost	43%					

NPUTS: Phases A-D					
FS+PL cost \$M FY16	400				
Total Mission Cost					
Mission Type	Asteroid & Comet				
% Reserves	30%				

OUTPUTS: Phases A-D, \$M FY16				
РМ	16			
PSE	17			
MA	26			
Science	19			
Payload	94			
FS	314			
MOS/GDS	42			
ATLO	24			
Mission Design	14			
Reserves	170			
Total	735			

Data Shown is notional

Team X Cost Dash Board

Background

- Current Excel database hosts cost, schedule, and technical parameters (cost-drivers only) from JPL flown missions, Team X, Proposals, and other NASA center flown missions
- Originally built (~2009) for CER generation

Current Activities

- Developing capability to populate database automatically from selected Team X studies
- Developing capability to populate database from templates for JPL historical actual data, proposal data, NICM, Software Cost Database, Cubesat cost data, and other data sources
- Providing a source of analogy data
- Enabling Rules of Thumb and CER generation capability directly from database
- Enabling data summarization and visualization

Benefits and Rationale

- Single source of "truth" for data
- Provide real-time data to Team X, A-team, proposers, and other formulation analysts so they can align estimates with historical information and previous proposals and studies
- Improve cost modeling efficiency and accuracy
- Provide decision-makers (e.g., ADMs/Section Managers) the data required to make sound recommendations.

3/7/2018 15

Data Shown is notional

Vision

Redefine cost engineering in formulation by facilitating credible and transparent cost estimation, schedule estimation, & risk identification early in a mission concept, enabling these parameters to influence design

Tasks

- Collect & Normalize Cost and Technical Data
 - Develop operational process to continuously collect and normalize historical mission, proposal, and Team X data for use as reference data
- Mission and Cost Database (MCDB)
 - Establish a database to support model development and real-time estimation and analysis
 - Integrate cost database & methods/tools into design trade space to support A/Xc/X as well as proposal teams
 - Improve customer confidence in formulation cost estimates by enabling real-time review of supporting data
- ICM Upgrades and Migration
 - Integrate ICMs into Foundry MBSE infrastructure to support Team X, external cost estimation and to facilitate improvements to existing capabilities
 - Make tools externally accessible to JPL communities of practice
- Upgraded Cost Capabilities
 - Establish a vetted set of cost estimation and analysis tools
 - Provide a range of CML-appropriate products to customers to enhance decision-maker information
 - Provide continuous review and alignment of current estimates with historical actuals as concepts progress through the formulation lifecycle

Data Sources

- JPL Historical Mission data from Historical Technical/Cost/Schedule Data Sheets
- Proposal data
- Team X mission study data
- Non-JPL actuals from the One NASA Cost Estimation (ONCE) (database version of the Cost Analysis Data Requirement (CADRe)
- Software costs from the Analogy Software Cost Tool (ASCoT)
- Commercial Bus Catalog already in Hardware Catalog
- Team Xc cubesat study data
- Historical cubesat data from Cubesat Or Microsat Probabilistic and Analogies Cost Tool (COMPACT) database
- Historical instrument data from the NASA Instrument Cost Model (NICM) database

Data Organization and Storage

- Provide standard Excel sheet template representation of missions
- Use Excel sheet templates to bulk upload or update cost, technical, and programmatic data
- User interface that allows one to update individual parameters directly
- Allow for reloads/replace if new data is available
- Use scripts to transform Excel sheet data into MCDB database readable formats
- Data Quality assurance tool will be used to ensure data integration correctness

Data Visualization

 Visualize how design, schedule, and programmatic changes propagate through cost with uncertainty at different levels of fidelity by CML

WBS Elements	Option1	Option2	Option3
Project Cost (including Launch Vehicle)	\$990.9 M	\$1254.8 M	\$1235.8 M
Development Cost (Phases A - D)	\$649.8 M	\$894.1 M	\$860.3 M
01.0 Project Management	\$18.8 M	\$30.7 M	\$30.0 M
02.0 Project Systems Engineering	\$23.4 M	\$32.6 M	\$29.8 M
03.0 Mission Assurance	\$23.8 M	\$32.8 M	\$31.5 M
04.0 Science	\$18.5 M	\$22.8 M	\$38.0 M
05.0 Payload System	\$100.0 M	\$100.0 M	\$50.0 M
06.0 Flight System	\$246.9 M	\$373.4 M	\$383.1 M
6.01 Flight System Management	\$4.5 M	\$5.5 M	\$15.1 M
6.02 Flight System Systems Engineering	\$33.8 M	\$43.5 M	\$43.5 M
Element 01	\$200.8 M	\$316.0 M	\$316.0 M
6.04 Power	\$32.7 M	\$35.9 M	\$35.9 M
6.05 C&DH	\$39.1 M	\$60.0 M	\$60.0 M
6.06 Telecom	\$42.0 M	\$50.4 M	\$50.4 M
6.07 Structures (includes Mech. I&T)	\$25.1 M	\$107.1 M	\$107.1 M
6.08 Thermal	\$14.8 M	\$15.1 M	\$15.1 M
6.09 Propulsion	\$9.9 M	\$10.3 M	\$10.3 M
6.10 ACS	\$15.3 M	\$15.3 M	\$15.3 M
6.12 S/C Software	\$21.8 M	\$21.8 M	\$21.8 M
6.14 Spacecraft Testbeds	\$7.8 M	\$8.4 M	\$8.6 M
07.0 Mission Operations Preparation	\$18.3 M	\$31.6 M	\$36.0 M
09.0 Ground Data Systems	\$16.2 M	\$22.7 M	\$23.5 M
10.0 ATLO	\$25.1 M	\$29.4 M	\$28.3 M
11.0 Education and Public Outreach	\$2.4 M	\$3.0 M	\$3.0 M
12.0 Mission and Navigation Design	\$6.4 M	\$8.8 M	\$8.5 M
Development Reserves	\$150.0 M	\$206.3 M	\$198.5 M
Operations Cost (Phases E - F)	\$65.6 M	\$85.3 M	\$100.1 M

The cost information contained in this document is notational and is intended for informational purposes only. It does not constitute a commitment on the part of JPL and/or Caltech.

3/7/2018 JPL/Caltech 20

User Interface

The cost information contained in this document is notional and is intended for informational purposes only. It does not constitute a commitment on the part of JPL and/or Caltech.

3/7/2018

"Take-Aways"

- Important to integrate cost into the design process
- Use a diverse suite of cost estimating models for various CMLs
- Establish a single source of cost and technical data
- Use an expanded set of quantitative methods to produce high quality estimates earlier in the design process
- Obtain "buy-in" from all organizations

jpl.nasa.gov